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Abstract

This paper presents the static analysis of general spher-
ical nR simple open or closed kinematic chains with joint
friction. The internal loading on each link is found to con-
sist of a bending moment and a torsional moment. The
goal of this analysis is to determine these moments which
are then used in designing the link.

The moment and force balance equations for each link
yields a linear system of equations which define the internal
moments of the mechanism and the output torque on the
driven crank for a given input torque. A Counlomb model
of joint friction is used to determine the friction torque
along the axis of a joint. The joint friction model requires
an iterative solution.

The purpose of this algorithm is to provide a means of
computing the complete internal and external loading on
the members of spherical chains while including frictional
effects in order to facilitate the design of a functional spher-
ical mechanisms.

1 Introduction

Algorithms for designing spherical mechanisms to perform de-
sired coupler motions, or to generate specific functions relating
input and output angles are described by Duffy, 1980, and Chi-
ang, 1988, and others. Our experience with the design and con-
struction of spherical mechanisms shows that joints often jam due
to link deformation under internal loading. It is apparent that
designing links which can support these internal forces is central
to synthesizing functional spherical mechanisms. This paper de-
scribes an analysis tool that performs a complete static loading

analysis of a spherical mechanism which can be included in the

standard kinematic design procedures.
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‘We approach this problem from the point of view of robotics
and formulate the Jacobian of the equivalent open chain which
determines the relationships between external forces and mo-
ments and the applied joint torques. Unlike this case, we are
also interested in the constraining forces and moments at each
joint. We show that these moment terms can be determined from
a construction similar to the Jacobian, which we define as the
link moment matriz. The algorithm uses the link moment ma-
trix to generate the moment balance equations for each member
of the spherical chain. The moment and force balance equations
for each link are the static equilibrium equations for the system.
These equations take the form; [A]x = b, where x is the vector
of unknown internal and external loads on the system. Frictional
effects in the joints are modeled as a friction torque about the

joint axis proportional to the remaining components of the joint
moment. An iterative solution of the equilibrium equations yields
the desired forces and moments. We demonstrate the algorithm
by analyzing a 4R spherical closed chain.

2 Equilibrium Equations

In this section we formulate the static equations of equilibrium
for a rigid link i connecting two revolute joints. First, the general
spatial force and moment balance equations are derived. Then,
we present the constraint equations associated with the require-
ment of spherical chains that the joint axes intersect at 2 point.

In our formulation all of the link forces are measured in the
fixed reference frame, see Fig. 1. Therefore, the force balance
equation for link 7 is simply,



— %4+ % =0 (1)

The superscript 0 indicates that the vector is measured in the
fixed frame and the subscript ¢ denotes that the force is applied
by the (i — 1) link to the i** link.

Now, the equation of moment balance for a general revolute
spherical link i is derived. This derivation is based upon writ-
ing the moment balance equation in the form of the robotics
technique of determining joint torques for 2 manipulator given a
desired end-effector applied force and moment.

Let 8 be the vector of joint angles for an n.R link manipulator
with 7 as the vector of actuator torques, °fg as the force applied
by the end-effector, and Ong as the moment applied by the end-
effector. The superscipt 0 indicates that the vector is measured
in the fixed frame and the subscript E denotes that the force or
moment is appled by the end-effector. Then, the joint torque is
related to the applied force and moment by the Jacobian, [J(8)],
of the manipulator, see Yoshikawa, 1990.

r=vor{ o } @
where,
7(0)) = 51,55 -,S.]
and,
s = {5 Q

Note that S;(#) is related to the Pliicker coordinates of the ith
joint axis of the manipulator. Here, 0z; is the unit vector along

Figure 1: Free Body Diagram for a General Revolute Link

the it joint axis, and ®p, is the vector from a point on the %%;
axis to the end-effector.

In considering a single link of the mechanism, Eq. 2 becomes
the moment balance equation for the link about its joint axis.
The Jacobian, S;(8), for this 1R manipulator, see Eq. 3, then
relates the loads applied at the (i+ 1)t joint axis to the moment
about the & joint axis.

On)_:;

EMOZ,’ = 0 = —T3 + S,(0)T{ OfE } (4)

174

In a kinematic chain °fg and ng are the forces that link ¢ apply
to link i - 1. Since the links are in static equilibrium the forces
and moments link 7 applies to link i+ 1 are reacted back to link i.
Let °f;4; be the force link ¢ applies to link i+1, and Om;,; be the
moment link i applies to link ¢ + 1. Then, for link , °fiy; = %fg
and %m;y; = ng. Using this notation the free body diagram for
a general link ¢ is drawn, see Fig. 1. The equation of moment

balance about the it joint axis is;

B Moy, = 0= ~"m;-%2; +°pE,i X %11 - %2 — Pmiyy - %2 (5)

To a complete the static analysis of a spherical link we require
similar moment balance equations about each of the two axis
orthogonal to the joint axis. Let %x;, %y;, and %z; be unit vectors
along the (z, v, z) axis of the (4 — 1)t link reference frame. Let
m; be the moment link 7 — 1 applies to link i, measured in the
(i — 1) link reference frame. That is to say, miz = Om; - Ox;,
miy = °m; - Oy;, and m;; = Om; - %2;. Then, we have from Fig. 1
and Eq. 5 that,

0 0
TMoy, =0=~"m; - x; +°pE,; % =0y -0~ Omgyy - %% (6)

EMoy, = 0= —"m;-%i+pEi x —"fina Oy =Omiga - Oy (7)

These equations written in matrix form yields,

T ¢
%%; x °pei of;
Miz = { : Qx;p ! 0 + )]
T
. Oy; x %pE. o5;
My = { yi oyipE't un;j_il (9)

miqg
T
%2; X %pg,i 0fx‘ﬂx-l
Mz ={ ' 0, ' Omrye (10)

‘We simplify these equations by forming the 3 x 3 skew-sym-
metric matrix [P;] corresponding to the vector ®pg ;. This allows
%k X %2; to be written as [F;]°z;, see McCarthy, 1990. Using
this, Eq. 8, Eq. 9, and Eq. 10 are rewritten in matrix form as
follows,

m; = "L [P i + PT Omin (11)
where [°7T}] is the 3 X3 orthogonal rotation matrix which describes
the orientation of the 7 link reference frame to the fixed frame.

In order to simplify the solving of the moment balance equa-
tions it is convenient to reformulate Eq. 11 so that all of the
moment vectors are measured in their respective link reference
frames. To do this let [T;] be the matrix transformation from the
(i — 1)t link reference frame to the (i) link reference frame.
Then,

1
'z =17 (12)
n=1
These matrices, [T;], can be used to change the reference frame
of the moment vectors as follows,

'm;yy = PTi]mig = (L[] [Tialmin

(13)

Using Eq. 13, Eq. 11 can be written in terms of moments mea-
sured in their respective link frames in the form of Eq. 2.

m; = [MLS]T{ :;":1 } (14)
where,
_ [ ez
[MLS] - [ [Ti+1]T } (15)



Eq. 14 is the three moment balance equations for a general link.
[Mzs], given by Eq. 15, which we call the link moment matrix,
is a 6 X 3 matrix derived from the geometry of the link.

Now, we present the constraint equations satisfied by the links
of a spherical kinematic chain. For a spherical link ¢ the con-
straint equations are as follows, see Bagci, 1971. Due to the
geometry of the joints no force is transmitted from link 7 — 1 to
link i along the it joint axis, Eq. 16.

0f: .02, =0

(16)

Furthermore, if there is no externally applied torque on the ith
joint axis,
m;-%; =0 )

Since a revolute joint cannot support any moments.

3 Assembling the System of Equations

In this section we assemble the equilibrium equations for each
link of a spherical mechanism into a system of linear equations.

Eq. 14 and Eq. 1 are the 6 equations of static equilibrium
for a spherical link. These six equations written for each link
of a spherical mechanism, coupled with the constraint equations,
Eq. 16 and Eq. 17, form the system of linear equations to be
solved. These equations are written in the form [A]x = b, where;
x is the vector of unknown forces and moments, and [A] and b are
coefficients determined from the linear equations of static equilib-
rium. This system of linear equations can be solved for x using
numerous numerical algorithms such Gauss-Seidel elimination,
etc.

4 TFriction

Friction is incorporated into the model as follows. The approach
used here is based on Keler, 1973. First, for a given driving crank
angle each of the remaining joint angles must be known. Then,
for a given system configuration solve the equilibrium equations
to obtain an initial solution without friction. Compute the fric-
tion at a joint axis ¢ as follows,

Mizf = —~pMAG(m;)SIGN(8; — 6;) (18)
where; g is a coefficient of friction, MA G(m;) is the magnitude of
the vector m;, and #; and 6; are the values of the joint angle one
crank motion ahead of its current value, and its current value;
respectively. This friction moment, mi.s, is introduced to the
linear system of equilibrium equations by forming the vector ft;
which contains all of the friction moments. This new system of
linear equations, [Alx = b + ft is then solved for x. From this
solution a new ft is formed. This new system is then solved.
This process is repeated until we have converged upon a final
solution, x. Keler, 1973, shows that convergence will occur unless
the mechanism self-locks.

5 Spherical Geometry

Recall from the above discussion that %z; is the unit vector along
the # joint axis and that [T}] is the 3 x 3 orthogonal rotation
matrix which describes the transformation of coordinates from
the (i — 1) link reference frame to the (i)t link reference frame.
Using the coordinates for a spherical link as defined in Denavit
and Hartenberg, 1955, we have,
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cosf; —cosa;sinf; —sinf;sino;
T3] = sinf; cosa;cosf; —cosd;sina; (19)
0 sin o CoSs @

where; 8; is the rotation of link i about its axis of rotation %z;,
and o; is the length of link 7. Note that the fixed reference
frame is chosen to coincide with the first joints reference frame.
Therefore, [T1] = [I] and %z, = (0,0,1). Using [°T}], as defined
in Eq. 12, the vectors describing the geometry of a spherical link
are computed as follows,

O2; = [°T})°2, (20)
(21)
where R is the radius of the sphere. Using the above equations,
[MLs] can easily be written for any link on a spherical chain.

°pg; = R(°zip1 ~ °zi)

6 Case Study: Spherical 4R Closed Chain

In this section we apply the static analysis methodology described
above to a 4R spherical closed chain. Closed chains are analyzed
as open chains where the fixed link of the closed chain is made to
be the ground link. Therefore, a 4R closed ghain is analyzed as
a 3R open chain. The mechanism is shown, with the appropriate
labels, in Fig. 2.

A complete static analysis of the mechanism is desired. On
the driven crank a known torque is applied. In these exam-
ples, my; = 10.0. The mechanism chosen has the following link
lengths; @ = 25deg, ag = 70 deg, a3 = 45 deg, and a4 = 80 deg.
Using link 1 as the driven crank results in a crank-rocker mech-
anism. The corresponding torque on the driven crank, as well
as all of the internal forces and moments on the system, are to
be solved for. Using the notation described above, the solution
vector x has 23 components and is formed as;

x = (%], °F , %] , M1z, M1y, m¥, m3, m])7 (22)
Note that mg, is the desired torque on the driven crank. The 6
equations of static equilibrium are written for each of the three
links using Eq. 14 and Eq. 1. This yields 18 equilibrium equa-
tions. Recall that we wish to solve for 23 unknowns. Therefore,
5 constraint equations are added to the system. Eq. 16 is written
three times to constrain the internal forces that links 1,2 and 3
apply. Eq. 17, is written twice to constrain the internal moments
at the two free joints of the system; the two joints on the coupler.
The result is a system of 23 linear equations in 23 unknowns. The
analysis was implemented using the MATLAB analysis package
on a DEC 5000/200.

The driven crank angle as a function of driving crank angle is
plotted in Fig. 3. Note that the driven crank velocity changes sign
at a driving crank angle of 140 degrees. This is a singular config-
uration for the mechanism. The driven torque peaks at f; = 140
(degrees); though for brevity the driven torque for all crank an-
gles is not shown here. Therefore, our load analysis will be done
for driving crank angles of 0 < f; < 140 (degrees). The driven
torque is plotted in Fig. 4. The internal moments applied to the
coupler are, —mga;, which is the bending moment, and —may,
which we call the torsional moment. Recall that these moments
are measured in the coupler’s reference frame, see Fig. 1. The
bending and torsional moments are plotted in Fig. 5. Note that
Mgy has a minimum value that is 2.3 times the driving torque
to the system and has a maximum that is 22.9 times the applied
torque. In addition, may is zero.



1 Figure 2: Spherical 4 Bar Closed Chain
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Figure 3: Driven Crank Angle versus Driving Crank Angle
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In this example friction is included on the coupler’s two mov-
ing joints. The coefficient of friction used is p = 0.25. The
criteria used to determine convergence is that the norm of the
change in solution was required to be less than 0.10. The driven
torque is plotted in Fig. 4. Note that the driven torque has de-
creased for all driving crank angles. This can be interpreted as
the driving torque losing some of its ability to do useful work
by having to oppose the friction torques. The internal moments
applied to the coupler are plotted in Fig. 6. Note in the presense
of friction that the maximum and minimum values of ma; have
decreased to 2.3 and 12.2 times the driving torque to the system;
respectively. However, the presence of coupler joint friction has
induced an internal reaction moment on the coupler about its y
axis. This torsional moment, mg,, ranges from 0.6 to 3.3 times
the driving torque to the system.
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Figure 4: Driven Torque versus Driving Crank Angle
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Figure 5: mg, and mg, versus Driving Crank Angle
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Figure 6: ma, and ma, versus Driving Crank Angle
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7 Conclusions

In this article we have presented an algorithm for performing a
complete static loading analysis for spherical n.R kinematic chains
with joint friction. In particular we have examined the case of
spherical 4 bar closed chains. In our study of these mechanisms
we have found that when approaching singular configurations
the bending moments on the coupler become large a5 the output
torque increases. In other configurations the bending moment
has a minimum of 2.3 times the driving torque. In addition,
we have found joint friction to cause torsional moments on the
coupler not present when friction is neglected in the model. It is
our expectation that understanding the internal loading will lead
to practical spherical mechanisms.
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